Environmentally sound destruction of obsolete pesticides in developing countries using cement kilns


The Foundation for Scientific and Industrial Research (SINTEF), P.O. Box 124, N-0314 Oslo, Norway; Ministry of Natural Resources and Environment, Department of EIA and Appraisal, 83 Nguyen Chi Thanh, Hanoi, Viet Nam; Vietnam Environmental Protection Agency, 67 Nguyen Du, Hanoi, Viet Nam; Hanoi University of Science, Research Centre for Environmental Technology and Sustainable Development, 334 Nguyen Trai, Hanoi, Viet Nam; Ho Chi Minh City Environmental Protection Agency, 23 Tran Phu, Ward 4, Ho Chi Minh City, Viet Nam; Department of Natural Resources and Environment, 244 Dien Bien Phu Street, Ho Chi Minh City, Viet Nam; Department of Natural Resources and Environment, 260 Quoc Lo, Bien Hoa City, Dong Nai, Viet Nam; Department of Natural Resources and Environment, Huynh Van Nghe, Thu Dao Mot, Binh Duong, Viet Nam; Department of Natural Resources and Environment, 130 Ly Thuong Kiet, Vung Tau, Viet Nam; Department of Natural Resources and Environment, 1226 Nguyen Trung, Rach Gia Bo, Kien Giang, Viet Nam

Abstract: The accumulation and inadequate management of obsolete pesticides and other hazardous chemicals constitutes a threat for health and environment, locally, regionally and globally. Estimates indicate that more than 500,000 tonnes of obsolete pesticides are accumulated globally, especially in developing countries. FAO has been addressing this issue and disposed of approximately 3000 tonnes of obsolete pesticides in Africa and the Near East since the beginning of the 1990s. These pesticide wastes have mainly been shipped to Europe for high-temperature combustion in dedicated incinerators, a treatment option usually not available in developing countries. High temperature cement kilns are however commonly available in most countries and have shown to constitute an affordable, environmentally sound and sustainable treatment option for many hazardous chemicals if adequate procedures are implemented. Cement kilns have been used for disposal of obsolete pesticides in developing countries earlier but no study has been able to verify the destruction efficiency in an unambiguous way. Lessons learned from earlier experiences were used to carry out a test burn with two obsolete insecticides in a cement kiln in Vietnam. The destruction efficiency was measured to be better than 99.9999969% for Fenobucarb and better than 99.9999832% for Fipronil and demonstrated that the hazardous chemicals had been destroyed in an irreversible and environmental sound manner without new formation of dioxins, furans, hexachlorobenzene or PCBs, a requirement of the Stockholm Convention on POPs. © 2006 Elsevier Ltd. All rights reserved.

Author Keywords: Co-processing; Disposal; Hazardous chemicals; POPs
Index Keywords: cement; dinitro ortho cresol; dioxin; fenobucarb; fipronil; furan derivative; hexachlorobenzene; pesticide; polychlorinated biphenyl; polychlorinated dibenzodioxin; Africa; article; combustion; dangerous goods; developing country; environmental impact assessment; environmental management; environmental protection; Europe; high temperature procedures; incineration; Malaysia; Middle East; organic pollution; Pakistan; Poland; pollutant; priority journal; Tanzania; Viet Nam; waste disposal
Year: 2006
Source title: Environmental Science and Policy
Volume: 9
Issue: 6
Page: 577-586
Cited by: 10
Link: Scopus Link
Chemicals/CAS: dinitro ortho cresol, 534-52-1; fenobucarb, 3766-81-2; fipronil, 120068-37-3; hexachlorobenzene, 118-74-1, 55600-34-5
Correspondence Address: Karstensen, K.H.; The Foundation for Scientific and Industrial Research (SINTEF), P.O. Box 124, N-0314 Oslo, Norway; email: khk@sintef.no
ISSN: 14629011
CODEN: ESCPF
DOI: 10.1016/j.envsci.2006.05.005
Language of Original Document: English
Abbreviated Source Title: Environmental Science and Policy
Document Type: Article
Source: Scopus
Authors with affiliations:
• Karstensen, K.H., The Foundation for Scientific and Industrial Research (SINTEF), P.O. Box 124, N-0314 Oslo, Norway
• Kinh, N.K., Ministry of Natural Resources and Environment, Department of EIA and Appraisal, 83 Nguyen Chi Thanh, Hanoi, Viet Nam
• Thang, L.B., Vietnam Environmental Protection Agency, 67 Nguyen Du, Hanoi, Viet Nam
• Viet, P.H., Hanoi University of Science, Research Centre for Environmental Technology and Sustainable Development, 334 Nguyen Trai, Hanoi, Viet Nam
• Tuan, N.D., Ho Chi Minh City Environmental Protection Agency, 23 Tran Phu, Ward 4, Ho Chi Minh City, Viet Nam
• Toi, D.T., Department of Natural Resources and Environment, 244 Dien Bien Phu Street, Ho Chi Minh City, Viet Nam
• Hung, N.H., Department of Natural Resources and Environment, 260 Quoc Lo, Bien Hoa City, Dong Nai, Viet Nam
• Quan, T.M., Department of Natural Resources and Environment, Huynh Van Nghe, Thu Dao Mot, Binh Duong, Viet Nam
• Hanh, L.D., Department of Natural Resources and Environment, 130 Ly Thuong Kiet, Vung Tau, Viet Nam
• Thang, D.H., Department of Natural Resources and Environment, 1226 Nguyen Trung, Rach Gia Bo, Kien Giang, Viet Nam
References:
• Brevik, K., Alcock, R., Li, Y.-F., Bailey, R.E., Fiedler, H., Pacyna, J.M., Primary sources of selected POP's: Regional and global scale emission inventories (2004) Environ. Pollut., 128, pp. 3-16


• De Vito, M.J., Birnbaum, L.S., Dioxins: Model chemicals for assessing receptor-mediated toxicity (1995) Toxicology, 102, pp. 115-123


• Huden, G.H., Pesticide disposal in a cement kiln in Pakistan-a pilot project (1990) Pacific Basin Conference on Hazardous Waste, , East-West Center, Honolulu, November 12-14


• Karstensen, K.H., Disposal of obsolete pesticides in cement kilns in developing countries-lessons learned and how to proceed (2001) Proceedings of the Sixth International HCH and Pesticide Forum, , Poznan, Poland, March 20-22


• Lauber, J.D., Destruction and disposal of waste PCB (1987) PCBs and the Environment, , Waid J.S. (Ed), CRC Press, USA
• Viken, W., Waage, P., Treatment of hazardous waste in cement kilns within a decentralised scheme: the Norwegian experience (1983) Industry and Environment, 4, , UNEP