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a b s t r a c t

This paper considers the problem of exponential stability and stabilization of switched lin-
ear time-delay systems. The system parameter uncertainties are time-varying and
unknown but norm-bounded. The delay in the system states is also time-varying. By using
an improved Lyapunov–Krasovskii functional, a switching rule for the exponential stability
and stabilization is designed in terms of the solution of Riccati-type equations. The
approach allows for computation of the bounds that characterize the exponential stability
rate of the solution. Numerical examples are given to illustrate the results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Switching systems belong to an important class of hybrid systems, which are described by a family of differential equa-
tions together with specified rules to switch between them. A switching system can be represented by a differential equation
of the form
_xðtÞ ¼ frðt; xÞ; t P 0;
where ffrð�; �Þ : r 2 Ig is a family of functions parameterized by some index set I, which is typically a finite set, and rð�Þ,
which depends on the system state at each time, is the switching rule/signal determining a switching sequence for the given
system.

Switching systems arise in many practical processes that cannot be described by exclusively continuous or exclusively
discrete models, such as manufacturing, communication networks, automotive engineering control, chemical processes
(e.g. see [5,7,14] and the references therein). In the last two decades, there has been increasing interest in stability analysis
and control design for switched systems (e.g. [5,8,13,14,20]). Also, during the last decades, the stability problem of uncertain
linear time-delay systems and applications to control theory has attracted a lot of attention [2–4,11,12]. The main approach
for stability analysis relies on the use of Lyapunov–Krasovskii functionals and linear matrix inequality (LMI) for constructing
suitable Lyapunov–Krasovskii functionals.

Although some important results have been obtained for linear switched systems, there are few results concerning the
stability of switched linear systems with time delay and uncertainties. In [15], the problem of stabilization via state feedback
and/or state-based switching for switched linear systems with multiple time-varying delays without uncertainties was con-
sidered. It was proved in [15] that the switched linear delay system will be stabilizable via state feedback and/or switching if
the corresponding system with zero delays has a Hurwitz stable convex combination and the delays less than an appropriate
. All rights reserved.
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upper bound that satisfies a set of LMIs. In [16,18], delay-dependent asymptotic stability conditions are extended to discrete-
time linear switching systems with time delay. Considering switching systems composed of a finite number of linear point
time-delay differential equations, it has been shown recently in [6], that the asymptotic stability may be achieved by using a
common Lyapunov function method switching rule. There are some other results concerning asymptotic stability for switch-
ing linear systems with time delay, but most of them provide conditions for the asymptotic stability or stabilization of
switched systems without focusing on exponential stability. The exponential stability problem was considered in [21] for
switching linear systems with impulsive effects by using the matrix measure concept, and in [19] for nonholonomic chained
systems with strongly nonlinear input/state driven disturbances and drifts. On the other hand, it is worth noting that the
existing stability conditions for time-delay systems must be solved upon a grid of the parameter space, which results in test-
ing a nonlinear Riccati-type equation or a finite number of LMIs. In this case, the results using finite gridding points are unre-
liable and the numerical complexity of the tests grows rapidly. Therefore, finding new conditions for the robust exponential
stability of uncertain linear switching time-delay systems is of interest.

In this paper, we study the problem of robust exponential stability for a class of uncertain linear hybrid time-delay sys-
tems. Different from [6,15,19,21], the system considered in this paper is subject to time-varying uncertainties and time-vary-
ing delay. Our objective is to derive delay-dependent conditions for the exponential stability by using an improved
Lyapunov–Krasovskii functional. The conditions will be presented in terms of the solution of Riccati-type equations. Com-
paring with the previous results, a simple geometric design is employed to find the switching rule and our approach allows
to compute simultaneously the two bounds that characterize the exponential stability rate of the solution. The result is ap-
plied to obtain new sufficient conditions for stabilization of linear uncertain control switching systems. The paper can be
considered as an extension of existing results for linear switching time-delay systems.

The paper is organized as follows. Section 2 presents notations, definitions and a technical lemma required for the proof of
the main results. Sufficient conditions for the exponential stability and application to stabilization together with illustrative
examples are presented in Section 3. The paper ends with a conclusion followed by cited references.
2. Preliminaries

The following notations will be used throughout this paper. Rþ denotes the set of all real non-negative numbers; Rn de-
notes the n-dimensional space with the scalar product h�; �i and the vector norm k � k; Rn�r denotes the space of all matrices of
ðn� rÞ-dimensions. AT denotes the transpose of A; I denotes the identity matrix; kðAÞ denotes the set of all eigenvalues of A;
kmaxðAÞ ¼maxfRek : k 2 kðAÞg; kminðAÞ ¼minfRek : k 2 kðAÞg; A matrix A is semi-positive definite (A P 0) if hAx; xiP 0, for
all x 2 Rn; A is positive definite (A > 0) if hAx; xi > 0 for all x–0; A P B means A� B P 0.

Consider a class of uncertain linear hybrid time-delay systems of the form
_xðtÞ ¼ ½Ar þ DArðtÞ�xðtÞ þ ½Dr þ DDrðtÞ�xðt � hðtÞÞ; t 2 Rþ;

ðtÞ ¼ /ðtÞ; t 2 ½�h;0�;

�
ð2:1Þ
where xðtÞ 2 Rn is the system state; rð�Þ : Rn ! I :¼ f1;2; . . . ;Ng is the switching function, which is piece-wise constant
function depending on the state at each time and will be designed. Ar;Dr 2 f½Ai;Di�; i ¼ 1;2; . . . ;Ng;Ai;Di are given matrices
and /ðtÞ 2 Cð½�h;0�;RnÞ is the initial function with the norm k/k ¼ sups2½�h;0�k/ðsÞk. The uncertainties satisfy the following
conditions:
DAiðtÞ ¼ E0iF0iðtÞH0i; DDiðtÞ ¼ E1iF1iðtÞH1i;
where Eki;Hki; k ¼ 0;1; i ¼ 1;2; . . . ;N are given constant matrices with appropriate dimensions; FkiðtÞ are unknown, real
matrices satisfying
FT
kiðtÞFkiðtÞ 6 I; k ¼ 0;1; i ¼ 1; . . . ;N 8t P 0:
The time-varying delay function hðtÞ is assumed to satisfy the following condition:
0 6 hðtÞ 6 h; _hðtÞ 6 l < 1; t P 0;
where h and l are given constants. This assumption means that the time delay may change from time to time but the rate of
changing is bounded, i.e. the delay cannot increase as fast as the time itself.

Definition 2.1. Given b > 0. The system (2.1) is b-exponentially stable if there exists a switching function rð�Þ and positive
number c such that any solution xðt;/Þ of the system satisfies
kxðt;/Þk 6 ce�btk/k 8t 2 Rþ ð2:2Þ
for all the uncertainties.

Definition 2.2 [17]. The system of matrices fLig; i ¼ 1;2; . . . ;N, is said to be strictly complete if for every x 2 Rn n f0g there is
i 2 f1;2; . . . ;Ng such that xT Lix < 0.



L.V. Hien et al. / Applied Mathematics and Computation 210 (2009) 223–231 225
Let us define
Xi ¼ fx 2 Rn : xT Lix < 0g; i ¼ 1;2; . . . ;N:
It is easy to show that the system fLig; i ¼ 1;2; . . . ;N, is strictly complete if and only if
[N
i¼1

Xi ¼ Rn n f0g: ð2:3Þ
Remark 2.1. As shown in [17], a sufficient condition for the strict completeness of the system fLig is that there exist
ni P 0; i ¼ 1;2; . . . ;N such that

PN
i¼1ni > 0 and
XN

i¼1

niLi < 0:
If N ¼ 2 then the above condition is also necessary for the strict completeness.

Next, we introduce the following lemma, which will be used in the proof of our results.

Lemma 2.1 [11]. For any x; y 2 Rn, matrices P; E; F;H with P > 0; FT F 6 I, and scalar e > 0, one has

(1) EFH þ HT FT ET
6 e�1EET þ eHT H,

(2) 2xT y 6 xT P�1xþ yT Py.
3. Main results

In the sequel, for the sake of brevity, we will denote r for the switching signal rð�Þ.
For given numbers b;h;l and symmetric positive definite matrix P we set
s ¼ ð1� lÞ�1
; g ¼ se2bh þ 2b;

Si ¼ E0iE
T
0i þ e2bhE1iE

T
1i; Q ¼

XN

i¼1

DT
i PDi; R ¼

XN

i¼1

HT
1iH1i;

LiðPÞ ¼ AT
i P þ PAi þ HT

0iH0i þ PSiP þ Q þ sRþ gP; ð3:1Þ

a1 ¼ kminðPÞ; a2 ¼ kmaxðPÞ þ h
XN

i¼1

kmaxðDT
i PDiÞ þ s

XN

i¼1

kmaxðHT
1iH1iÞ

" #
: ð3:2Þ
Theorem 3.1. The system (2.1) is b-exponentially stable if there exists a symmetric positive definite matrix P such that the system
of matrices fLiðPÞg; i ¼ 1;2; . . . ;N is strictly complete.

Moreover, the solution xðt;/Þ of the system satisfies
kxðt;/Þk 6
ffiffiffiffiffi
a2

a1

r
e�btk/k; t 2 Rþ:
Proof. Consider the following Lyapunov–Krasovskii functional:
VðxtÞ ¼ V1ðxðtÞÞ þ V2ðxtÞ þ V3ðxtÞ;
where xt 2 Cð½�h;0�;RnÞ; xtðsÞ ¼ xðt þ sÞ; s 2 ½�h;0� and
V1ðxðtÞÞ ¼ xTðtÞPxðtÞ;

V2ðxtÞ ¼
Z t

t�hðtÞ
e2bðs�tÞxTðsÞQxðsÞds;

V3ðxtÞ ¼
1

1� l

Z t

t�hðtÞ
e2bðs�tÞxTðsÞRxðsÞds:
It is easy to verify that
a1kxðtÞk2
6 VðxtÞ 6 a2kxtk2

; t P 0; ð3:3Þ
where a1;a2 are respectively defined by (3.2).
Taking derivative of V1ðxðtÞÞ ¼ xTðtÞPxðtÞ along trajectories of any subsystem ith we have
_V1ðxðtÞÞ ¼ xTðtÞ½AT
i P þ PAi�xðtÞ þ 2xTðtÞPDAiðtÞxðtÞ þ 2xTðtÞPDixðt � hðtÞÞ þ 2xTðtÞPDDiðt � hðtÞÞ:
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Applying Lemma 2.1 gives
2xTðtÞPDAiðtÞxðtÞ 6 xTðtÞPE0iE
T
0iPxðtÞ þ xTðtÞHT

0iH0ixðtÞ;
2xTðtÞPDDixðt � hðtÞÞ 6 e2bhxTðtÞPE1iE

T
1iPxðtÞ þ e�2bhxTðt � hðtÞÞHT

1iH1ixðt � hðtÞÞ;
2xTðtÞPDixðt � hðtÞÞ 6 se2bhxTðtÞPxðtÞ þ s�1e�2bhxTðt � hðtÞÞDT

i PDixðt � hðtÞÞ:
ð3:4Þ
Next, taking derivative of V2ðxtÞ and V3ðxtÞ, respectively, along the system trajectories yields
_V2ðxtÞ ¼ �2bV2ðxtÞ þ xTðtÞQxðtÞ � ð1� _hðtÞÞxTðt � hðtÞÞe�2bhðtÞQxðt � hðtÞÞ
6 �2bV2ðxtÞ þ xTðtÞQxðtÞ � s�1e�2bhxTðt � hðtÞÞQxðt � hðtÞÞ; ð3:5Þ

_V3ðxtÞ ¼ �2bV3ðxtÞ þ sxTðtÞRxðtÞ � sð1� _hðtÞÞxTðt � hðtÞÞe�2bhðtÞRxðt � hðtÞÞ
6 �2bV3ðxtÞ þ sxTðtÞRxðtÞ � e�2bhxTðt � hðtÞÞRxðt � hðtÞÞ: ð3:6Þ
From (3.1), (3.4)–(3.6) we get
_VðxtÞ þ 2bVðxtÞ 6 xTðtÞ½AT
i P þ PAi þ Q þ sRþ PSiP�xðtÞ þ gxTðtÞPxðtÞ þ xTðtÞHT

0iH0ixðtÞ ¼ xTðtÞLiðPÞxðtÞ: ð3:7Þ
Let us set
XiðPÞ ¼ fx 2 Rn : xT LiðPÞx < 0g:
Then by the strict completeness of the system of matrices fLiðPÞg, and from (2.3) it follows that
[N
i¼1

XiðPÞ ¼ Rn n f0g:
Defining the sets
eX1ðPÞ ¼ X1ðPÞ; eXiðPÞ ¼ XiðPÞ n
[i�1

j¼1

eXjðPÞ; i ¼ 2;3; . . . ;N;
we see that
[N
i¼1

eXiðPÞ ¼ Rn n f0g; eXiðPÞ \ eXjðPÞ ¼ ;; i–j:
Therefore, for any xðtÞ 2 Rn; t P 0, there exists i 2 f1;2; . . . ;Ng such that xðtÞ 2 eXiðPÞ. By choosing switching rule as
rðxðtÞÞ ¼ i whenever xðtÞ 2 eXiðPÞ, from (3.7) we have
_VðxtÞ þ 2bVðxtÞ 6 xTðtÞLiðPÞxðtÞ 6 0; t P 0:
This implies that VðxtÞ 6 Vð/Þe�2bt; t P 0. Taking (3.3) into account, we obtain
a1kxðt;/Þk2
6 VðxtÞ 6 Vð/Þe�2bt

6 a2e�2btk/k2
; t P 0
and then
kxðt;/Þk 6
ffiffiffiffiffi
a2

a1

r
e�btk/k; t P 0;
which concludes the proof of the Theorem 3.1. h

Remark 3.1. Note that by Remark 2.1, the system fLiðPÞg is strictly complete if there exist ni P 0; i ¼ 1;2; . . . ;N;
PN

i¼1ni > 0
such that
XN

i¼1

niLiðPÞ < 0: ð3:8Þ
In this case, the switching rule can be chosen as
rðxðtÞÞ ¼ arg minfxTðtÞLiðPÞxðtÞg; t P 0:
Indeed, as shown in the proof of Theorem 3.1, we have arrived at the estimation
_VðxtÞ þ 2bVðxtÞ 6 xTðtÞLiðPÞxðtÞ; t P 0:
Since ni P 0 and n ¼
PN

i¼1ni > 0, so
min
i¼1;2;...;N

xTðtÞLiðPÞxðtÞ 6 n�1
XN

i¼1

nix
TðtÞLiðPÞxðtÞ:
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By choosing switching rule as
rðxðtÞÞ ¼ arg minfxTðtÞLiðPÞxðtÞg; t P 0;
we have
_VðxtÞ þ 2bVðxtÞ 6 xTðtÞLiðPÞxðtÞ 6 n�1
XN

i¼1

nix
TðtÞLiðPÞxðtÞ 6 0:
This leads to
kxðt;/Þk 6
ffiffiffiffiffi
a2

a1

r
e�btk/k; t P 0
as desired.
The following procedure can be applied to design the switching rule:

Step 1: Define the symmetric positive definite matrix P (i.e. the solution of the matrix inequality (3.8)) such that the sys-
tem fLiðPÞg is strictly complete.
Step 2: Construct the sets XiðPÞ, and then eXiðPÞ.
Step 3: The switching rule is chosen as rðxðtÞÞ ¼ i, whenever xðtÞ 2 eXiðPÞ.
Example 1. Consider the system (2.1), where N ¼ 2;hðtÞ ¼ 0:5 sin2 t and
½A1;D1� ¼
�20 1
�4 6

� �
;

1 �1
1 �1

� �� �
;

½A2;D2� ¼
5 �1
1 �30

� �
;

1 �1
3 �4

� �� �
;

E0i ¼ E1i ¼
0:2 0
0 0:2

� �
; H0i ¼ H1i ¼

1 0
0 1

� �
:

Note that, both matrices A1 and A2 are unstable. In this case, we have h ¼ 0:5, l ¼ 0:5; s ¼ 2; b ¼ 1. We verify that the
symmetric positive definite matrix
P ¼
3:3922 �1:5840
�1:5840 1:8170

� �

satisfies (3.8) with n1 ¼ n2 ¼ 0:5, that is,
LðPÞ ¼ 0:5L1ðPÞ þ 0:5L2ðPÞ < �0:5I;
Fig. 1. Regions of X1, X2.
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where
L1ðPÞ ¼
�78:4218 �10:8561
�10:8561 59:8458

� �
; L2ðPÞ ¼

75:3468 8:8683
8:8683 �64:6418

� �
:

Therefore, the system fL1ðPÞ; L2ðPÞg is strictly complete. The sets X1ðPÞ;X2ðPÞ are defined as
X1ðPÞ ¼ fðx; yÞ 2 R2 : �78:4218x2 � 21:7122xyþ 59:8458y2 < 0g;
X2ðPÞ ¼ fðx; yÞ 2 R2 : 75:3468x2 þ 17:7366xy� 64:6418y2 < 0g;
which can be represented in Fig. 1.
It can be seen that X1ðPÞ [X2ðPÞ ¼ R2 n f0g. Therefore, the switching regions are given as
eX1ðPÞ ¼ fðx; yÞ 2 R2 : �78:4218x2 � 21:7122xyþ 59:8458y2 < 0g;eX2ðPÞ ¼ fðx; yÞ 2 R2 : �78:4218x2 � 21:7122xyþ 59:8458y2 P 0; ðx; yÞ–ð0;0Þg:
We have eX1ðPÞ [ eX2ðPÞ ¼ R2 n f0g; eX1ðPÞ \ eX2ðPÞ ¼ ;. The switching rule is chosen as
rðxðtÞÞ ¼ 1 if xðtÞ 2 eX1ðPÞ;
2 if xðtÞ 2 eX2ðPÞ:

(

By Theorem 3.1, the solution of the system satisfies
kxðt;/Þk 6 5:2885e�tk/k 8t P 0:
For the case when N ¼ 1 (without switching), Theorem 3.1 gives an exponential estimate for the robust stability of uncer-
tain linear time-delay systems, as considered in [9,10].

Corollary 3.1. The uncertain linear time-delay system
_xðtÞ ¼ ½Aþ DAðtÞ�xðtÞ þ ½Dþ DDðtÞ�xðt � hðtÞÞ; t P 0 ð3:9Þ
is b-exponentially stable if there exists a symmetric positive definite matrix P such that the following condition hold:
AT P þ PAþ DT PDþ PSP þ gP þM < 0;
where S ¼ E0ET
0 þ e2bhE1ET

1;M ¼ HT
0H0 þ sHT

1H1;g ¼ 2bþ se2bh.
Moreover, the solution of the system (3.9) satisfies
kxðt;/Þk 6
ffiffiffiffiffi
a2

a1

r
e�btk/k; t 2 Rþ;
where a1 ¼ kminðPÞ;a2 ¼ kmaxðPÞ þ h½kmaxðDT PDÞ þ skmaxðHT
1H1Þ�.

For comparison with the condition obtained in [9,10], we consider the following example.

Example 2. Consider the linear uncertain time-delay system
_xðtÞ ¼ ½Aþ DA�xðtÞ þ ½Dþ DD�xðt � hÞ;
where
A ¼
�4 1
0 �4

� �
; D ¼

0:1 0
4 0:1

� �
; kDAk 6 0:2; kDDk 6 0:2:
Here h ¼ 0:5;l ¼ 0; E0 ¼ E1 ¼ 0:2I;H0 ¼ H1 ¼ I, then Corollary 3.1 gives the decay rate b ¼ 0:9539 and the stability factor
c ¼ 5:9053 with the solution matrix P
P ¼ 1:0eþ 005 �
8:4328 2:7162
2:7162 1:6256

� �

and the solution satisfies
kxðt;/Þk 6 5:9053e�0:9539t; t P 0:
It is interesting to note that the decay rate for this system by using Corollary 3.1 is greater than decay rate b ¼ 0:476,
obtained by using Theorem 2 in [9] or b ¼ 0:095 from the matrix measure results in [10].

As an application of Theorem 3.1, we consider stabilization problem of a linear switching control time-delay system of the
form
_xðtÞ ¼ ½Ar þ DArðtÞ�xðtÞ þ ½Dr þ DDrðtÞ�xðt � hðtÞÞ þ ½Br þ DBrðtÞ�uðtÞ; t 2 Rþ;

xðtÞ ¼ /ðtÞ; t 2 ½�h;0�;

�
ð3:10Þ
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where uðtÞ 2 Rm is the control; Br 2 f½Bi�; i ¼ 1;2; . . . ;Ng;Bi are given constant matrices. The uncertainty DBiðtÞ satisfies:
DBiðtÞ ¼ E2iF2iðtÞH2i; i ¼ 1;2; . . . ;N; t 2 Rþ;
where E2i;H2i; i ¼ 1;2; . . . ;N are given constant matrices with appropriate dimensions.

Definition 3.1. Given b > 0. The system (3.10) is b-exponentially stabilizable if there exist matrices Ki 2 Rm�n such that the
resulting closed-loop system
_xðtÞ ¼ ½Ar þ BrKr þ DArðtÞ þ DBrðtÞKr�xðtÞ þ ½Dr þ DDrðtÞ�xðt � hðtÞÞ ð3:11Þ
is b-exponentially stable. The control uðtÞ ¼ KrxðtÞ is stabilizing feedback control of the system.

To proceed with the exponential stabilization condition, we set
eSi ¼ E0iE
T
0i þ E2iE

T
2i þ e2bhE1iE

T
1i;eLiðPÞ ¼ AT

i P þ PAi � PBiB
T
i P þ HT

0iH0i þ
1
4

PBiH
T
2iH2iB

T
i P þ PeSiP þ Q þ sRþ gP;
where
Q ¼
XN

i¼1

DT
i PDi; R ¼

XN

i¼1

HT
1iH1i:
Theorem 3.2. The system (3.10) is b-exponentially stabilizable if there exists a symmetric positive definite matrix P such that one
of the following conditions holds:

(i) The system matrices feLiðPÞg is strictly complete.

(ii) There exist ni P 0;
PN

i¼1ni > 0 such that
XN

i¼1

ni
eLiðPÞ < 0: ð3:12Þ
The switching rule is defined as rðxðtÞÞ ¼ i whenever xðtÞ 2 eXi in case (i), and as
rðxðtÞÞ ¼ arg minfxTðtÞeLiðPÞxðtÞg; t P 0;
in case (ii). The feedback stabilizing control is given by uðtÞ ¼ � 1
2 BT

i PxðtÞ; t P 0.

Proof. For the feedback control uðtÞ ¼ KixðtÞ, where Ki ¼ � 1
2 BT

i P, we define
eAi ¼ Ai þ BiKi; eE0i ¼ E0i E2ið Þ;

eF 0iðtÞ ¼
F0iðtÞ 0

0 F2iðtÞ

� �
; eH0i ¼

H0i

H2iK

� �
:

Note that
E0iF0iðtÞH0i þ E2iF2iðtÞH2i ¼ E0i E2ið Þ
F0iðtÞ 0

0 F2iðtÞ

� �
H0i

H2iK

� �
;

the closed-loop system (3.11) becomes
_xðtÞ ¼ ½eAi þ eE0i
eF 0iðtÞeH0i�xðtÞ þ ½Di þ DDiðtÞ�xðt � hðtÞÞ; t P 0:
Therefore, the proof of Theorem 3.2 is then completed by the same arguments used in the proof of Theorem 3.1. h

Remark 3.2. It was proved in [15] that the switched linear delay system without uncertainties will be stabilizable via state
feedback and/or switching if the corresponding system with zero delays has a Hurwitz stable convex combination and the
delays less than an appropriate upper bound that satisfies a set of LMIs. Theorem 3.2 provide sufficient conditions for robust
exponential stability and stabilization of uncertain linear switching systems with time-varying delay.

Remark 3.3. The delay-dependent conditions for the exponential stability and stabilization are derived in terms of the solu-
tion of Riccati-type inequalities (3.8) and (3.12). To find the solution of these Riccati inequalities, one can use various com-
putationally efficient techniques, for example, in [1].
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Example 3. Consider the switched uncertain time-delay control system (3.10), where hðtÞ ¼ 1:5 sin2ð0:6tÞ, and
½A1;D1;B1� ¼
�20 1
�4 6

� �
;

1 �1
1 �1

� �
;

2
1

� �� �
;

½A2;D2;B2� ¼
5 �1
1 �30

� �
;

1 �1
3 �4

� �
;

3
5

� �� �
;

E0i ¼ E1i ¼
0:2 0
0 0:2

� �
; E21 ¼

1
0

� �
; E22 ¼

0
1

� �
;

H0i ¼ H1i ¼
1 0
0 1

� �
; H21 ¼

�1
1

� �
; H22 ¼

1
�1

� �
:

Here, we have h ¼ 1:5;l ¼ 0:9 and s ¼ 10; b ¼ 0:5. The condition (3.12) gives
eLðPÞ ¼ 0:5eL1ðPÞ þ 0:5eL2ðPÞ < 0;
where
P ¼
547:6711 �49:7510
�49:7510 24:8041

� �
:

The feedback control can thus be obtained as uðtÞ ¼ KixðtÞ, where
K1 ¼ �
1
2

BT
1P ¼ �522:7956 37:3489½ �;

K2 ¼ �
1
2

BT
2P ¼ �697:1292 12:6161½ �:
By using Theorem 3.2, the uncertain switching control system (3.10) is exponentially stabilizable and the solution of the
system satisfies
kxðt;/Þk 6 9:979e�0:5tk/k 8t P 0:
4. Conclusion

This paper has proposed a switching design for the exponential stability and stabilization of uncertain linear switching
time-delay systems. The stability conditions are derived in terms of the solution of Riccati-type equations. The approach al-
lows for the use of efficient techniques for computation of the two bounds that characterize the exponential stability rate of
the solution, as well as the feedback control.
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